
Assessing Segment- and 
Corridor-Based Travel-Time 
Reliability on Urban Freeways
Final Report
September 2016 

Sponsored by
Midwest Transportation Center
U.S. Department of Transportation 
Office of the Assistant Secretary for  
Research and Technology



About MTC
The Midwest Transportation Center (MTC) is a regional University Transportation Center (UTC) 
sponsored by the U.S. Department of Transportation Office of the Assistant Secretary for Research 
and Technology (USDOT/OST-R). The mission of the UTC program is to advance U.S. technology and 
expertise in the many disciplines comprising transportation through the mechanisms of education, 
research, and technology transfer at university-based centers of excellence. Iowa State University, 
through its Institute for Transportation (InTrans), is the MTC lead institution.

About InTrans
The mission of the Institute for Transportation (InTrans) at Iowa State University is to develop and 
implement innovative methods, materials, and technologies for improving transportation efficiency, 
safety, reliability, and sustainability while improving the learning environment of students, faculty, and 
staff in transportation-related fields.

About CTRE
The mission of the Center for Transportation Research and Education (CTRE) at Iowa State University is 
to develop and implement innovative methods, materials, and technologies for improving transportation 
efficiency, safety, and reliability while improving the learning environment of students, faculty, and staff 
in transportation-related fields.

ISU Non-Discrimination Statement 
Iowa State University does not discriminate on the basis of race, color, age, ethnicity, religion, national 
origin, pregnancy, sexual orientation, gender identity, genetic information, sex, marital status, disability, 
or status as a U.S. veteran. Inquiries regarding non-discrimination policies may be directed to Office of 
Equal Opportunity, Title IX/ADA Coordinator, and Affirmative Action Officer, 3350 Beardshear Hall, 
Ames, Iowa 50011, 515-294-7612, email eooffice@iastate.edu.

Notice
The contents of this report reflect the views of the authors, who are responsible for the facts and the 
accuracy of the information presented herein. The opinions, findings and conclusions expressed in this 
publication are those of the authors and not necessarily those of the sponsors.

This document is disseminated under the sponsorship of the U.S. DOT UTC program in the interest 
of information exchange. The U.S. Government assumes no liability for the use of the information 
contained in this document. This report does not constitute a standard, specification, or regulation.

The U.S. Government does not endorse products or manufacturers. If trademarks or manufacturers’ 
names appear in this report, it is only because they are considered essential to the objective of the 
document.

Quality Assurance Statement
The Federal Highway Administration (FHWA) provides high-quality information to serve Government, 
industry, and the public in a manner that promotes public understanding. Standards and policies are 
used to ensure and maximize the quality, objectivity, utility, and integrity of its information. The FHWA 
periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality 
improvement.



 

Technical Report Documentation Page 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

   

4. Title and Subtitle 5. Report Date 

Assessing Segment- and Corridor-Based Travel-Time Reliability on Urban 

Freeways 

September 2016 

6. Performing Organization Code 

 

7. Author(s) 8. Performing Organization Report No. 

Jing Dong, Chaoru Lu, Chenhui Liu, and Neal Hawkins  

9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) 

Center for Transportation Research and Education 

Iowa State University 

2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 

 

11. Contract or Grant No. 

Part of DTRT13-G-UTC37 

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered 

Midwest Transportation Center 

2711 S. Loop Drive, Suite 4700 

Ames, IA 50010-8664 

U.S. Department of Transportation 

Office of the Assistant Secretary for 

Research and Technology 

1200 New Jersey Avenue, SE 

Washington, DC 20590 

Final Report 

14. Sponsoring Agency Code 

 

15. Supplementary Notes 

Visit www.intrans.iastate.edu for color pdfs of this and other research reports. 

16. Abstract 

Travel time and its reliability are intuitive performance measures for freeway traffic operations. The objective of this project was 

to quantify segment-based and corridor-based travel time reliability measures on urban freeways. To achieve this objective, a 

travel-time estimation model and a travel-time reliability prediction framework were developed.  

The proposed travel-time estimation model considers spatially correlated traffic conditions. Segment-level and corridor-level 

travel-time distributions were estimated using travel time estimates and compared with estimates based on probe vehicle data. 

Corridor-level travel-time reliability measures were extracted from travel-time distributions. The proposed travel-time estimation 

model can well capture the temporal pattern of travel time and its distribution.  

For the corridor-level travel-time reliability prediction framework, travel time observations are classified based on weather 

conditions, segment travel-time distributions are estimated, and segment travel-time distributions are synthesized to corridor 

travel-time distributions. The segment travel-time distribution estimation model was found to capture the pattern of actual travel-

time distributions and could adequately represent the short-term corridor-level travel-time distributions. The proposed travel-time 

reliability prediction framework provides a systematic way to estimate real-time and near-future corridor travel-time reliability by 

considering weather impact.  

A Vissim simulation calibrated to Iowa compared travel-time distribution based on simulated data to that based on probe vehicle 

data. The simulated travel-time distribution is similar to the travel-time distribution based on probe data. 

17. Key Words 18. Distribution Statement 

freeway operations—performance measures—travel-time distribution—travel-

time reliability—Vissim simulation 

No restrictions. 

19. Security Classification (of this 

report) 

20. Security Classification (of this 

page) 

21. No. of Pages 22. Price 

Unclassified. Unclassified. 85 NA 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 

  



 



 

ASSESSING SEGMENT- AND CORRIDOR-BASED 

TRAVEL-TIME RELIABILITY ON URBAN 

FREEWAYS 
 

Final Report 

September 2016 
 

Principal Investigator 

Jing Dong, Transportation Engineer 

Center for Transportation Research and Education, Iowa State University 

 

Co-Principal Investigator 

Neal Hawkins, Associate Director 

Institute for Transportation, Iowa State University 

 

Research Assistants 

Chaoru Lu and Chenhui Liu 

 

Authors 

Jing Dong, Chaoru Lu, Chenhui Liu, and Neal Hawkins 

 

 

 

Sponsored by 

Midwest Transportation Center and 

U.S. Department of Transportation  

Office of the Assistant Secretary for Research and Technology 

 

 

 

A report from 

Center for Transportation Research and Education 

and Institute for Transportation 

Iowa State University 

2711 South Loop Drive, Suite 4700 

Ames, IA 50010-8664 

Phone: 515-294-8103 / Fax: 515-294-0467 

www.intrans.iastate.edu  



 

 



v 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS ............................................................................................................ vii 

EXECUTIVE SUMMARY ........................................................................................................... ix 

INTRODUCTION ...........................................................................................................................1 

Background ..........................................................................................................................1 
Project Objectives ................................................................................................................1 
Report Organization .............................................................................................................1 

LITERATURE REVIEW ................................................................................................................3 

Estimation Methods for Travel Time and Travel-Time Reliability .....................................3 

Prediction Methods for Travel Time and Travel-Time Reliability ......................................4 

DATA DESCRIPTION ...................................................................................................................6 

Probe Vehicle Data ..............................................................................................................6 

Radar Sensor Data................................................................................................................6 
Weather Data .......................................................................................................................9 

METHODOLOGY ........................................................................................................................11 

Spatial Correlation of Segment Travel Times ...................................................................11 
Travel-Time Reliability Based on Radar Sensor Data .......................................................14 

Corridor-Level Travel-Time Reliability Prediction ...........................................................19 
Travel-Time Distribution Based on Vissim .......................................................................28 

RESULTS ......................................................................................................................................29 

Travel-Time Reliability Based on Radar Sensor Data .......................................................29 

Corridor-Level Travel-Time Reliability Prediction ...........................................................39 
Travel-Time Distribution Based on Vissim .......................................................................63 

CONCLUSIONS............................................................................................................................67 

REFERENCES ..............................................................................................................................69 

APPENDIX ....................................................................................................................................75 



vi 

LIST OF FIGURES 

Figure 1. Sensor locations ................................................................................................................7 
Figure 2. Flow chart for replacing missing data ..............................................................................8 
Figure 3. Available INRIX and sensor data .....................................................................................9 

Figure 4. Relationship between the correlation value and the distance between the two 

segments for Des Moines, Iowa freeway data from 7:00 a.m. to 8:00 p.m. ......................13 
Figure 5. Node-segment representation of part of a corridor .........................................................14 
Figure 6. Study corridor and sensor locations ...............................................................................29 
Figure 7. Comparison of model-based travel-time index, Vanajakshi et al. (2009) travel-

time index, naïve approach-based travel-time index, and INRIX travel-time index .........31 
Figure 8. Speed contour of sensors ................................................................................................32 
Figure 9. Probability density distributions of peak 15-minute travel times ...................................36 

Figure 10. Cumulative density distributions of peak 15-minute travel times ................................38 
Figure 11. Study area .....................................................................................................................39 
Figure 12. Relationship between mean and standard deviation of travel time per mile 

under different weather conditions for Des Moines, Iowa freeway data ...........................42 
Figure 13. Mean travel times of two-component multistate model under different weather 

conditions ...........................................................................................................................45 
Figure 14. Standard deviation of two-component multistate model under different 

weather conditions .............................................................................................................48 

Figure 15. Historical mean travel times from January 2013 through December 2014 ..................49 
Figure 16. Ground truth and estimated 95th percentile travel time under different weather 

conditions ...........................................................................................................................52 
Figure 17. Study corridor ...............................................................................................................53 

Figure 18. Performance of synthesizing methods under different weather conditions ..................55 
Figure 19. Time-varying parameters of I-35/80 (7:00 a.m. to 8:00 p.m.) .....................................56 

Figure 20. Corridor decomposition method ...................................................................................57 
Figure 21. Performance of synthesizing methods under different weather conditions ..................60 
Figure 22. Observed travel time, predicted travel time, and predicted 95th percentile 

travel time in different weather conditions ........................................................................63 
Figure 23. Test segment on I-235, Des Moines, IA .......................................................................64 

Figure 24. Travel-time distributions based on INRIX data and simulated data ............................66 
 

 

LIST OF TABLES 

Table 1. Outlier identification rules for radar sensor data ...............................................................7 
Table 2. Calibration results of models ...........................................................................................12 
Table 3. Plausible function forms of travel-time distribution ........................................................19 
Table 4. Performance measures of different methods ...................................................................33 
Table 5. Performance measures at different data aggregation levels .............................................34 

Table 6. Model selection based on log-likelihood .........................................................................35 
Table 7. Variance of reliability indices of INRIX travel time and model-based travel time .........38 
Table 8. Traffic volumes in congested and uncongested conditions .............................................64 

 



vii 

ACKNOWLEDGMENTS 

The authors would like to thank the Midwest Transportation Center and the U.S. Department of 

Transportation Office of the Assistant Secretary for Research and Technology for sponsoring this 

research. The Iowa Department of Transportation provided match funds for this project through a 

related study, which used Federal Highway Administration (FHWA) state planning and research 

funds. 

 

 



 



ix 

EXECUTIVE SUMMARY 

Travel time and its reliability are intuitive system performance measures for freeway traffic 

operations. Moreover, precise prediction of travel time and its reliability is a key component for 

many advanced traveler information and traffic management systems. The objective of this 

project was to quantify travel-time reliability measures on urban freeways, including segment-

based measures, which are concerned with the service quality at a bottleneck, and corridor-based 

measures, which capture the variation in travel times along a corridor. To achieve this objective, 

a travel-time estimation model and a travel-time reliability prediction framework were 

developed.  

We propose a travel-time estimation model that considers spatially correlated traffic conditions. 

Segment-level and corridor-level travel-time distributions were estimated using these travel-time 

estimates and compared with the ones estimated based on probe vehicle data. The maximum 

likelihood estimation was used to estimate the parameters of Weibull, gamma, normal, and 

lognormal distributions. According to the log-likelihood values, lognormal distribution is the 

best fit among all the tested distributions. Corridor-level travel-time reliability measures were 

extracted from the travel-time distributions. The proposed travel-time estimation model can well 

capture the temporal pattern of travel time and its distribution.  

Furthermore, a corridor-level travel-time reliability prediction framework is proposed. The 

framework contains four parts. First, travel-time observations are classified based on weather 

conditions using hierarchical cluster analysis. Second, segment travel times are predicted using 

the autoregressive integrated moving average (ARIMA) model. Third, travel-time distribution is 

estimated based on the predicted travel time. Fourth, segment travel-time distributions are 

synthesized to corridor travel-time distributions. Inspired by Winkler’s (1981) consensus model, 

the correlated travel times on adjacent segments are treated as bivariate normally distributed 

random variables. The synthesizing method is extended to two-component mixture normal 

distribution. The performance of the travel-time distribution estimation method and the 

synthesizing method were evaluated and compared with the probe vehicle travel-time data. The 

results of 95th percentile travel-time analysis show that the segment travel-time distribution 

estimation model captures the pattern of actual travel-time distributions. The proposed 

synthesizing method could adequately represent the short-term corridor-level travel-time 

distributions. Therefore, the proposed short-term corridor-level travel-time reliability prediction 

framework provides a systematic way to estimate real-time and near-future corridor travel-time 

reliability by considering weather impact.  

Moreover, by using the specific Iowa-based calibration factors of Vissim, the simulated corridor-

level travel-time distribution was compared with the travel-time distribution based on INRIX 

data. The simulated travel-time distribution is similar to the travel-time distribution based on 

probe data.

https://stat.ethz.ch/R-manual/R-devel/library/stats4/html/mle.html
https://stat.ethz.ch/R-manual/R-devel/library/stats4/html/mle.html
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INTRODUCTION 

From a driver’s perspective, travel time and its reliability are considered more intuitive measures 

of service quality than the levels of service defined in the Transportation Research Board’s 2010 

Highway Capacity Manual. Highly reliable travel times allow for arriving at work or other 

destinations on time in the context of personal travel and facilitate just-in-time logistics services 

in freight operations, while highly variable travel times lead to unpredictable trip times and a low 

quality of transportation services (Turochy and Smith 2002). 

Background 

Traffic congestion is a problem in cities all over the world. It results from increasing rates of car 

ownership and the limited supply capacity of the road system. This problem is causing traffic 

systems to be highly unreliable. Travel time and its reliability have been used as performance 

measures to evaluate traffic system conditions. Numerous studies have focused on the reliability 

and variability of travel time in the past decade.   

Precise prediction of travel time and its reliability could help travelers decide individual 

departure times and route choices for pre-trip planning as well as route navigation. Travelers 

could choose the route with a good balance of both mean travel time and travel-time reliability. 

Project Objectives 

One of the primary objectives of this research project was to quantify segment- and corridor-

based reliability measures on urban freeways. By analyzing urban freeway traffic data and probe 

vehicle data, a corridor-level travel-time reliability measure estimation model was developed. 

Because probe vehicles directly collect travel-time data, segment-level and corridor-level travel-

time distributions can be easily estimated. In the absence of the direct measurement of travel 

times, point measurements of traffic conditions obtained from loop detectors or roadside sensors 

were used to estimate travel time and reliability measures along a stretch of urban freeway. In 

particular, the flow rates and speeds measured by roadside radar sensors on consecutive freeway 

segments were used to estimate segment travel-time distributions and correlation coefficients 

between segments. Accordingly, corridor-level travel-time reliability measures were developed.  

Another objective of this research project was to predict corridor-level travel-time reliability on 

urban freeways. By analyzing probe vehicle data and weather data, a corridor-level travel-time 

reliability prediction framework considering the impacts of weather was developed. Moreover, 

the simulated travel-time distribution was compared to the travel-time distribution based on the 

probe data.  

Report Organization 

The remainder of this report is organized as follows. Chapter 2 provides a literature review on 

the methods of estimating and predicting travel time and its reliability. Chapter 3 provides a 
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summary of the data processing methods used in this study. Chapter 4 describes a travel-time 

estimation method based on radar sensor data. The travel-time reliability prediction framework is 

also discussed in this chapter. Chapter 5 describes the case study of this report. Chapter 6 

presents the conclusions of this research and directions for future study. 
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LITERATURE REVIEW 

Estimation Methods for Travel Time and Travel-Time Reliability  

With the advances in sensing technology, a number of travel-time estimation methods have been 

proposed based on data collected from various sources (e.g., Soriguera and Robusté 2011a, Tam 

and Lam 2008). Reviews of the research efforts on travel-time estimation methods can be found 

in Mori et al. (2015) and Vlahogianni et al. (2014). In particular, loop detectors have been widely 

used to measure traffic conditions at specific locations. Segment travel times can be estimated by 

simply extending the point speed measurements to the entire segment (Van Lint and Van Der 

Zijpp 2003, Soriguera and Robusté 2011b, Bovy and Thijs 2000). Moreover, to capture the 

traffic dynamics along the segment, several methods have been proposed to estimate travel time 

based on kinematic wave theory and other traffic flow theories (e.g., Van Arem et al. 1997, 

Coifman 2002, Zhang 2006, Kesting and Treiber 2008, Deniz et al. 2013, Aksoy and Celikoglu 

2012).  

Some travel-time estimation methods are essentially based on flow conservation and propagation 

principles (e.g., Celikoglu 2007, Celikoglu 2013a,b). Castillo et al. (2014) proposed a method 

that considered both the probabilistic and physical consistency of traffic-related random 

variables to estimate segment- and route-level traffic flows and travel times. Moreover, a number 

of queuing-based travel-time models have been developed in the literature (e.g., Daganzo 1995, 

Nie and Zhang 2005, Lei et al. 2013). These queuing-based models used a vertical queue or 

point-queue to describe traffic dynamics at bottlenecks. The point-queue models assume that the 

length of the queue is zero and that the segment has unlimited storage capacity. As a result, 

point-queue–based models usually ignore the spillback from a downstream bottleneck. 

In addition, various approaches have been developed to estimate travel-time reliability (e.g., 

Richardson 2003, Oh and Chung 2006, Kwon et al. 2011). One way to examine travel-time 

variation is to look at the distribution of travel times. Based on travel-time distributions, various 

reliability measures can be derived, including the standard deviation of travel times, buffer time, 

90th or 95th percentile travel times, buffer index, planning time index, and the probability that a 

trip can be successfully completed within a specified time interval (Dong et al. 2006, Tu et al. 

2007a, Higatani et al. 2009).  

Different functional forms have been used to describe segment travel-time distributions. Van 

Lint and Van Zuylen (2005) and Susilawati et al. (2010) pointed out that travel-time distributions 

are skewed and have a long upper tail. Based on travel-time data collected using an automatic 

vehicle identification system, Li et al. (2006) suggested that a lognormal distribution best 

characterizes the distribution of travel time when a large time window (e.g., in excess of one 

hour) is under consideration and in the presence of congestion, and a normal distribution is more 

appropriate for departure time windows on the order of minutes. Moreover, after using Weibull, 

exponential, lognormal, and normal distributions to fit the travel-time data collected from dual-

loop detectors, Emam and Al-Deek (2006) suggested that lognormal distribution is the best fit. 

Furthermore, to determine the probability of accomplishing a trip within a time window, a 

corridor-level reliability measure needs to capture the variability in the total travel times of 
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multiple roadway segments along the corridor. Although travel times can be easily integrated 

across time (with successive time frames constituting a trip) and space (with adjacent segments 

constituting a path), travel-time distributions are generally non-additive because of the spatial 

and temporal correlations. Considering the correlation among multiple bottlenecks along a 

freeway corridor, the travel time along a stretch of freeway can be computed as the sum of a set 

of correlated segment travel times. Accordingly, the corridor-level travel-time distributions, as 

well as various travel-time reliability measures, can be estimated. 

This study presents methods to estimate corridor-level travel-time reliability measures based on 

roadside radar sensor and probe vehicle data. Because probe vehicles directly collect travel-time 

data, segment-level and corridor-level travel-time distributions can be easily estimated. In the 

absence of the direct measurement of travel times, point measurements of traffic conditions 

obtained from loop detectors or roadside sensors were used to estimate travel time and reliability 

measures along a stretch of urban freeway. In particular, the flow rates and speeds measured by 

roadside radar sensors on consecutive freeway segments were used to estimate segment travel-

time distributions and correlation coefficients between segments. Accordingly, corridor-level 

travel-time reliability measures were developed.  

Prediction Methods for Travel Time and Travel-Time Reliability 

Over the past few decades, numerous segment travel time prediction approaches have been 

developed. These approaches can be categorized as parametric or non-parametric models. 

Parametric models, such as K nearest neighbor algorithms (Smith et al. 2002, Clark 2003, Bajwa 

et al. 2005) and neural network techniques (Park et al. 1999, Dia 2001, Van Lint 2006), try to 

determine the linkage between input and output factors. Non-parametric models, such as Kalman 

filtering models (Van Lint 2008, Chen and Chien 2001, Yang et al. 2004, Chien and Kuchipudi 

2003, Nanthawicit et al. 2003) and autoregressive integrated moving average models (Oda 1990, 

Yang 2005, Wang et al. 2014), try to match the current system state with similar patterns 

observed in the past. It has been proved that both parametric and non-parametric approaches can 

predict segment travel time accurately. In contrast to predicting a single measure of travel time 

(such as the mean travel time), predicting travel-time distribution captures the variability of the 

dynamic traffic network in the future. 

Despite the extensive literature on travel-time prediction, only a few studies have focused on 

travel-time distribution prediction. In particular, Van Lint and Van Zuylen (2005) proposed a 

method to predict long-term freeway travel-time reliability using the width and skew of the day-

to-day travel-time distribution. Fei et al. (2011) proposed a Bayesian inference-based dynamic 

linear model to predict route travel time. The posterior route travel-time distribution was used to 

generate both single-value travel time and a confidence interval representing the uncertainty of 

travel-time prediction. Du et al. (2012) presented an adaptive information fusion model to predict 

short-term segment travel-time distributions, considering quality of information.  

Moreover, weather has been shown to be an important factor impacting traffic conditions on 

freeways (Ibrahim and Hall 1994, Kim et al. 2010). Tu et al. (2007b) pointed out that adverse 

weather conditions can make travel time less reliable. However, only a few travel-time 
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prediction models have considered the effects of weather (Qiao et al. 2012, El Faouzi et al. 

2010). To the best of the authors’ knowledge, none of the existing travel-time distribution 

prediction models consider the impact of weather. Moreover, the existing travel-time prediction 

models are either inadequate or have limitations in terms of predicting the corridor-level travel-

time distribution. To address these limitations, a corridor-level travel-time reliability prediction 

framework is proposed in this study.  
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DATA DESCRIPTION 

Two independent data sources were used in this study to examine travel time and its reliability at 

the segment and corridor levels: probe vehicle data and radar sensor data. The speed and volume 

data collected by radar sensors at fixed locations were used to estimate travel time and its 

distribution. The probe vehicle travel-time data were used not only as the baseline to verify the 

accuracy of estimated travel times, but also to develop the corridor-level travel-time reliability 

prediction framework. Moreover, weather data and road surface condition data were used to 

predict travel time and its reliability.  

Probe Vehicle Data 

The probe vehicle travel-time data used in this study were provided by INRIX, a commercial 

company that provides real-time traffic data collected from in-vehicle transponders on 

commercial vehicles and increasingly from cell phones in passenger cars. In the Des Moines 

metropolitan area, the INRIX probe vehicle network covers all of the first, second, and third 

class roads, as well as the highway network. In this research, the probe vehicle travel-time data 

were queried from Regional Integrated Transportation Information System (RITIS), which 

archives INRIX probe vehicle data at 1-minute aggregation intervals. This dataset provides time-

stamped segment-based speeds, travel times, historical average speeds, free-flow speeds, and 

confidence scores. As stated in the INRIX Interface Guide (INRIX 2014), the data represent real-

time data only when the confidence score equals 30; otherwise the value is estimated from 

historical data. Consequently, the travel times used in this study were those with a confidence 

score of 30.  

Radar Sensor Data 

In recent years, the Iowa Department of Transportation (DOT) has been placing Wavetronix 

radar sensors along Interstates and major highways in the state. The majority of sensors are in the 

major metropolitan areas and provide valuable information for the Iowa DOT in terms of 

incident management, traffic operations, and planning. The existing Iowa DOT Wavetronix 

sensors cover the highway network in the Des Moines metropolitan area. These sensors count 

vehicles by lane and classification and register vehicle speeds. The aggregated data were 

obtained through an online data portal maintained by TransSuite. The data can be aggregated at 

different time intervals: 20 seconds; 5, 15, 30, 60 minutes; and 24 hours. To make these data 

consistent with the travel-time data generated by INRIX, the 20-second data were aggregated 

into 1-minute data and used to estimate travel times. The aggregated data obtained from 

TransSuite included volume, average speed, and average occupancy, by lane. The volume can be 

broken down by vehicle class as well.  

On-ramps and off-ramps are potential bottlenecks on freeways (Bertini and Malik 2004, Newell 

1999, Liu and Danczyk 2009). As a result, roadway sensors are usually placed close to ramps, as 

illustrated in Figure 1. In such cases, both the ramp flow and the mainline flow can be monitored 

using a side-fired radar sensor, as can the space mean speed. 
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Imagery ©2015 Google. Map data ©2015 Google. 

Figure 1. Sensor locations 

The radar sensors sometimes report extreme values due to malfunction. Such abnormal data were 

identified and removed using the rules proposed by Vanajakshi (2005), as detailed in Table 1.  

Table 1. Outlier identification rules for radar sensor data 

Individual Rules 

1) q > 50 Error 

2) v > 100 Error 

3) o > 90 Error 

Combination Rules 

4) v = 0, q = 0, o > 0 Error 

5) v = 0, q > 0, o > 0 Error 

6) v = 0, q > 0, o = 0 Error 

7) v > 0, q = 0, o = 0 Error 

8) v > 0, q = 0, o > 0 Error 

9) v > 0, q > 0, o = 0 Error 

10) v = 0 - 100, q = 0 - 50, o = 0 - 90 Accept 

q = volume in vehicles per minute per lane, 

v = speed in mph, o = occupancy in percent 

Source: Vanajakshi 2005 

Because the proposed travel-time estimation method needs to use volume and speed data during 

each time interval, the missing data were handled by the procedure shown in Figure 2.  
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N = number of missing values in this interval, ∆t = data aggregation level, D = density, V = volume, S = speed 

Figure 2. Flow chart for replacing missing data 

Is day i the last 

day? 

Is sensor M the 

last sensor? 

No 
Yes 

Find the time interval [t, t+N*∆t] of the 

continuously missing data. 

Find all the data in the time interval 

[t-N*∆t, t+2*N*∆t] of all the days 

in database. 

𝐷 = 
𝑉

𝑆
 

𝜀 𝑗 =
  𝐷 𝑡,𝑗 −𝐷 𝑡,𝑖  𝑡∈ t−N∗∆t,t)∪(t+N∗∆t,t+2∗N∗∆t 

2𝑁
    

, 𝑗 ∈ 𝐷𝑎𝑦 𝑎𝑛𝑑 𝑗 ≠ 𝑖 

Find Day [j] which has 

minimum 𝜀 

Use the data in time interval [t, t+N*∆t] 

of Day [j] to replace the missing data in 

time interval [t, t+N*∆t] of Day [i] 

Continuously 

missing > 10% 

Start Sensor = M 

Day = i 

Missing > 20% 
Remove Day [i] 

Yes 

No 

Yes 

No 

No 

End 

Yes 

i=i+1 

M=M+1 
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Basically, if a significant amount of data was missing on a certain day, that day was removed 

from the analysis. If data were missing only for a short time period, the data were imputed based 

on the data collected during the same time period on other days.  

The 1-minute interval data from 7:00 a.m. to 9:30 a.m. on weekdays from December 1, 2013 to 

December 1, 2014 were used in this study. Figure 3 shows the available radar sensor data and 

real-time INRIX data after the outliers were removed and the selected missing data were 

replaced.  

 

Figure 3. Available INRIX and sensor data 

To validate the proposed model against INRIX travel times, data needed to be available from 

both sources. The plot between the black lines indicates the data for April 2014, when both the 

INRIX and sensor data are available on most days for all segments. Inconsistencies between 

missing INRIX data and sensor data can cause differences between the model-based travel time 

and INRIX travel-time reliability indices.  

Weather Data 

Weather data were collected from the Automated Surface Observing System (ASOS) station at 

the Des Moines International Airport. Road surface condition data were obtained from the road 



10 

weather information system (RWIS) at that location. Road surface condition data include six 

types of road surface states, namely dry, trace moisture, wet, chemically wet, ice watch, ice 

warning. One-minute interval data from 7:00 a.m. to 8:00 p.m. on weekdays from 2013 to 2014 

were used in this study. 
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METHODOLOGY 

Spatial Correlation of Segment Travel Times 

In several studies (e.g., Park and Rilett 1999, Zou et al. 2014), researchers have pointed out that 

the correlation between two segments decreases with an increase in the distance between those 

two segments. In order to discover the extent to which this empirical trend applies to the area 

observed in this study, freeway travel-time data obtained from RITIS, which archives periodic 

travel-time data from the INRIX probe vehicle network, were investigated. The INRIX network 

provides travel-time data in 1-minute intervals for select routes. The system utilizes GPS probe 

data to estimate a segment’s space mean speed using a sample of speeds collected during the 

reporting interval. The system then computes the travel time based on the integer space mean 

speed. 

To examine the spatial correlations within the travel-time data, the correlation coefficient is used 

to represent the relationship between segment travel times. Equation (1) describes the cross-

correlation of travel times between different segments: 

𝜌𝑥,𝑦 =
 (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)𝑛

𝑖=1

𝜎𝑥𝜎𝑦
  (1) 

where, 

 𝜌𝑥,𝑦 is the correlation value between two variables x and y 

 𝜇𝑥 and 𝜇𝑦 are the means of variables x and y, respectively 

 𝜎𝑥 and 𝜎𝑦 are the standard deviations of variables x and y, respectively 

 𝑛 is sample size 

Three model specifications are considered here to determine the relationship between the 

correlation value and the distance between the two segments. The formulations of these three 

models can be written as follows: 

Linear model: 

𝜌 = 𝛽1 + 𝛽2𝑥 + 𝜀  (2) 

Power model:  

Ln𝜌 = ln 𝛽1 + 𝛽2 ∙ ln 𝑥 + 𝜀 (3) 

Exponential model: 
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Ln𝜌 = ln 𝛽1 + 𝛽2 ∙ 𝑥 + 𝜀  (4) 

where, 

 𝜌 is the correlation value 

 𝑥 is the distance between two segments 

 𝛽1 and 𝛽2 are coefficients 

 𝜀 is random error 

Historic travel-time data are also utilized to find the relationship between the correlation value 

and the distance between the two segments. The results of this analysis are shown in Table 2 and 

Figure 4. 

Table 2. Calibration results of models 

 

Linear Exponential Power 

Route 𝜷𝟏 𝜷𝟐 R-square 𝜷𝟏 𝜷𝟐 R-square 𝜷𝟏 𝜷𝟐 R-square 

I-235 0.597 -0.055 0.698 0.663 -0.172 0.807 0.6605 -0.609 0.820 

I-35/I-80 0.567 -0.035 0.460 0.553 -0.088 0.499 0.6495 -0.458 0.633 
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I-235 

 

I-35/I-80 

Figure 4. Relationship between the correlation value and the distance between the two 

segments for Des Moines, Iowa freeway data from 7:00 a.m. to 8:00 p.m. 

Based on the findings in the literature and the results from Table 2, we assume that a power 

relationship exists between the correlation value and the distance between the two segments:  

𝜌 = {
1     ,   0 < 𝑥 ≤ 𝑒

−
ln𝛽1
𝛽2

𝛽1 ∙ 𝑥𝛽2 , 𝑥 > 𝑒
−

ln𝛽1
𝛽2

  (5) 
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Travel-Time Reliability Based on Radar Sensor Data 

Travel-Time Estimation 

Consider a corridor with N potential bottlenecks. Assume that each bottleneck (i.e., sensor 

location) is a node and that the road segments between these nodes are represented by segments 

with homogeneous capacities. Denote node 1 as the starting point and node N as the last node. 

The segment between node M and node M+1 is denoted as segment M. Figure 5 illustrates the 

node-segment representation for part of the corridor, from node M to node M+3.  

 

Figure 5. Node-segment representation of part of a corridor 

An on-ramp or off-ramp might be connected to a node. The on-ramp or off-ramp is denoted as 

“On-ramp of M” or “Off-ramp of M.” For example, in Figure 5 the on-ramp that is connected to 

node M+1 is denoted as “On-ramp of M+1.” 

In order to construct a numerically tractable model for computing corridor-level travel time, the 

first-in, first-out property is assumed to ensure that any vehicles that enter the segment first 

would leave the segment first (Lei et al. 2013). In addition, traffic breakdowns can be detected 

when speeds drop significantly (e.g., by 10 mph) and the low speeds persist for a long period 

(e.g., 15 minutes) (Dong and Mahmassani 2009). Considering the spatial correlations between 

segments, three possible conditions might occur when estimating the travel time of segment M. 

For each condition, a travel-time calculation method is proposed. 

The first condition is when no breakdown occurs on segment M and segment M+1.The travel 

time of segment M at time t can be estimated based on the length of the segment and the average 

of speeds measured at the two ends of the segment, as follows:   

𝑇𝑐1 𝑀, 𝑡 =
2∗𝐷 𝑀 

𝑆 𝑀,𝑡 +𝑆 𝑀+1,𝑡 
 (6) 

where,  

 D[M] is length of segment M 

 S[M] and S[M+1] are the speeds measured at node M and M+1 at time t, respectively 
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The second condition is when the breakdown occurs at bottleneck M+1, causing congestion on 

segment M. The travel time of segment M at time t is calculated as follows. Assuming that the 

vehicles in the platoon are traveling at the same speed, the spacing between two vehicles in the 

platoon on segment M can be calculated as follows: 

𝑆𝑝𝑎𝑐𝑒 𝑀, 𝑡 = 𝑑0 + 𝑆 𝑀 + 1, 𝑡 ∗ 𝜏 (7) 

where,  

 d0 is the initial space between vehicles 

 τ is the reaction time 

 S[M+1] is the speed measured at node M+1 at time t 

The number of vehicles on segment M at time t can be computed as follows: 

𝑥 𝑀, 𝑡 = 𝑥 𝑀, 𝑡 − 1 + (𝐹 𝑀, 𝑡 − 1 − 𝐹 𝑀 + 1, 𝑡 − 1 + 𝑅 𝑀, 𝑡 − 1 + 𝑅 𝑀 + 1, 𝑡 − 1 ) ∗
𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  (8) 

where,  

 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the length of the time intervals 

 𝑥 𝑀, 𝑡 − 1  is the number of vehicles on segment M at time t-1 

 F[M, t-1] and F[M+1, t-1] are the flow rates measured at nodes M and M+1 at time t-1, 

respectively 

 R[M, t-1] and R[M+1, t-1] are the ramp flow rates measured at nodes M and M+1 at time t-1, 

respectively. The on-ramp flow rates are positive. The off-ramp flow rates are negative.  

Assuming that the increment of vehicles during the period adds to the queue, the number of 

vehicles in the queue (or queue size) can be computed as follows: 

𝑄 𝑀, 𝑡 = (𝐹 𝑀, 𝑡 − 𝐹 𝑀 + 1, 𝑡 + 𝑅 𝑀, 𝑡 + 𝑅 𝑀 + 1, 𝑡 ) ∗ 𝑡1 + 𝑥 𝑀, 𝑡   (9) 

where,  

 𝑡1 is the free-flow travel time on segment M 

The queue length is as follows: 

𝐿𝑄 = 𝑄 𝑀, 𝑡 ∗ (𝐿𝑉 + 𝑆𝑝𝑎𝑐𝑒 𝑀, 𝑡 ) (10) 

where,  
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 𝐿𝑉 is the average vehicle length 

The deceleration distance can be calculated as follows for vehicles entering segment M at speed 

S[M] and needing to decelerate before joining the slow moving traffic traveling at speed 

S[M+1]:  

𝐷𝑠 =
𝑆2 𝑀,𝑡 −𝑆2 𝑀+1,𝑡 

2𝑎
 (11) 

where,  

 a is the deceleration rate 

The sum of free-flow travel distance, deceleration distance, and queue length equals the length of 

segment M; that is,  

𝐷 𝑀 = 𝐷𝑆 + 𝑆 𝑀, 𝑡 ∗ 𝑡1 + 𝐿𝑄  (12) 

The free-flow travel time t1 can be solved for as follows: 

𝑡1 =
𝐷 𝑀 −𝐷𝑆−𝑥 𝑀,𝑡 ∗(𝐿𝑉+𝑆𝑝𝑎𝑐𝑒 𝑀,𝑡 )

(𝐹 𝑀,𝑡 −𝐹 𝑀+1,𝑡 +𝑅 𝑀,𝑡 +𝑅 𝑀+1,𝑡 )∗(𝐿𝑉+𝑆𝑝𝑎𝑐𝑒 𝑀,𝑡 )+𝑆 𝑀,𝑡 
  (13) 

As a result, the travel time of segment M at time t can be calculated as follows: 

 𝑇𝑐2 𝑀, 𝑡 = 𝑡1 +
𝐿𝑄

𝑆 𝑀+1,𝑡 
+

𝑆 𝑀,𝑡 −𝑆 𝑀+1,𝑡 

𝑎
 (14) 

The third condition is when the breakdown occurs at bottleneck M+2 at time t. Under this 

condition, if the queue spills back onto segment M, the travel time of segment M is impacted by 

the breakdown; otherwise, the travel time of segment M can be estimated in the same fashion as 

when no breakdown occurs.  

Similar to the second condition, the average spacing between two vehicles in the platoon, 

number of vehicles, queue size, and deceleration distance on segment M+1 can be derived by 

changing M and M+1 in equation (8) through equation (11) to M+1 and M+2, respectively. 

Therefore, the following situations are taken into consideration. 

When the queue length is longer than the length of segment M+1, the travel time is calculated as 

follows: 

𝑇𝑐3 𝑀, 𝑡 =
𝐷 𝑀 +𝐷 𝑀+1 −𝐿𝑄−𝐷𝑆

𝑆 𝑀,𝑡 
+

𝐿𝑄−𝐷 𝑀+1 

𝑆 𝑀+2,𝑡 
+

𝑆 𝑀,𝑡 −𝑆 𝑀+2,𝑡 

𝑎
  (15) 
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When the queue length is shorter than the length of segment M+1, but the queue length plus the 

deceleration distance is longer than the length of segment M+1, the travel time can be calculated 

as follows: 

𝑇𝑐3 𝑀, 𝑡 =
𝐷 𝑀 +𝐷 𝑀+1 −𝐿𝑄−𝐷𝑆

𝑆 𝑀,𝑡 
+

𝑆 𝑀,𝑡 −𝑆 𝑀+2,𝑡 

𝑎
∗

𝐷𝑆+𝐿𝑄−𝐷 𝑀+1 

𝐷𝑠
  (16) 

If the sum of the queue length and deceleration distance is shorter than the length of segment 

M+1 (i.e., the breakdown at bottleneck M+2 has no impact on travel time on segment M), the 

travel-time estimation method for segment M is same as the method described under the first 

condition. 

Furthermore, empirical studies have documented that flow breakdown does not necessarily occur 

at the same prevailing flow level, and therefore the pre-breakdown flow rate (i.e., the flow rate 

observed immediately before traffic breaks down) has been treated as a random variable in order 

to model the probabilistic nature of traffic breakdown (Brilon et al. 2005, Dong and Mahmassani 

2009). This results in a probability of breakdown occurring at a given flow (demand) level. The 

probability distribution function of the pre-breakdown flow rates has been calibrated to follow 

the Weibull distribution based on data samples from freeway sections in California (Dong and 

Mahmassani 2009, Kim et al. 2010) and Germany (Brilon et al. 2005). The pre-breakdown flow 

distribution function expresses the probability that traffic breaks down in the next time interval 

(for a given time discretization): 

𝑃 𝑀, 𝑡 = 1 − 𝑒−(
𝐹 𝑀,𝑡 

𝜎
)𝑠

 (17) 

where, 

 P[M,t] is the pre-breakdown probability at node M at time t 

 s is the shape parameter 

 σ is the scale parameter 

 F[M,t] is the flow rate measured at node M at time t 

Thus, the expected travel time of segment M is as follows: 

𝑇𝐸 𝑀, 𝑡 = [(1 − 𝑃 𝑀, 𝑡 )(1 − 𝑃 𝑀 + 1, 𝑡 ) + (1 − 𝑃 𝑀, 𝑡 )𝑃 𝑀 + 1, 𝑡 ] ∗ 𝑇𝑐1 𝑀, 𝑡 +

𝑃 𝑀, 𝑡 (1 − 𝑃(𝑀 + 1, 𝑡)) ∗ 𝑇𝑐2 𝑀, 𝑡 + 𝑃 𝑀, 𝑡 𝑃 𝑀 + 1, 𝑡 ∗ 𝑇𝑐3 𝑀, 𝑡  (18) 

where,  

 P[M,t] and P[M+1,t] are the pre-breakdown probabilities at nodes M and M+1 at time t, 

respectively 
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Consequently, a vehicle that departs from node M at time t would arrive at node M+1 at time 

t+TE[M]. The travel-time estimation procedure presented above is repeated to estimate travel 

time on segment M+1 using measurements collected at time t+TE[M]. The corridor-level travel 

time from bottleneck 1 to bottleneck N can be calculated as the sum of the time-dependent 

segment travel times: 

𝑇𝑐𝑜𝑟𝑟𝑖𝑑𝑜𝑟 =  𝑇𝐸 𝑖 𝑁
𝑖=1  (19) 

The proposed model detects different spillback conditions and uses the queue length and 

deceleration distance to calculate the delay at the bottleneck with queue spillback. However, the 

proposed model has a limitation. If the breakdown occurs between two sensors and the queue 

does not propagate to a sensor located upstream of the bottleneck, the model cannot detect the 

breakdown. 

In order to evaluate the performance of the proposed model, the travel-time estimation method 

proposed by Vanajakshi et al. (2009) was compared with the proposed method. In Vanajakshi et 

al. (2009), the travel time is calculated as follows: 

𝑇𝐸 𝑀, 𝑡 = {

𝐷 𝑀 

2

[𝐾 𝑀,𝑡−1 +𝐾 𝑀,𝑡 ]

𝐹 𝑀+1,𝑡 
  𝐹 𝑀 + 1, 𝑡 > 500 𝑣𝑒ℎ/ℎ𝑟/𝑙𝑛

2∗𝐷 𝑀 

𝑆 𝑀,𝑡 +𝑆 𝑀+1,𝑡 
                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (20) 

where, 

 K[M,t-1] and K[M,t] are the density measured at node M at times t-1 and t, respectively 

In addition, a naïve approach was also tested to estimate segment travel time based solely on the 

point measurement of speeds, that is, using equation (6) to calculate segment travel time. In this 

approach, the corridor travel time is simply the summation of the segment travel times. 

Travel-Time Distribution 

Four statistical distributions are considered to fit the data, as shown in Table 3. 
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Table 3. Plausible function forms of travel-time distribution 

 Probability density function Parameters Mean Mode 

Gamma 

 

k > 0 − shape 

θ > 0 – scale  

, 

for  

Weibull 
 

k > 0 − shape 

θ > 0 – scale 
 

, 

for  

Lognormal 

 

σ
2
 > 0 – shape 

− log 

scale 
 

 

Normal 
 

σ
2
 > 0 – 

variance 

−mean 

μ μ 

𝛤(∙)− Gamma function 

Based on the travel-time distribution, various reliability measures can be derived, including the 

following: 

 Planning time – The total travel time, which includes buffer time (i.e., calculated as the 95th 

percentile travel time) 

 Planning time index – How much larger the total travel time is than the ideal or free-flow 

travel time (i.e., calculated as the ratio of the 95th percentile to the ideal) 

𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥 =
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
    (21) 

 Buffer time – The extra time required (i.e., calculated as the difference between the 95th 

percentile travel time and the average travel time) 

𝐵𝑢𝑓𝑓𝑒𝑟 𝑡𝑖𝑚𝑒 = 95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒    (22) 

 Buffer index – The size of the buffer as a percentage of the average (i.e., calculated as the 

95th percentile travel time minus the average, divided by the average) 

𝐵𝑢𝑓𝑓𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 =
95𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒−𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
   (23) 

Corridor-Level Travel-Time Reliability Prediction 

The travel-time reliability prediction framework contains four parts. First, travel-time 

observations are classified based on weather conditions using hierarchical cluster analysis. The 
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travel times are categorized into three weather conditions: good weather, rain, and snow. Second, 

segment travel times are predicted using the autoregressive integrated moving average (ARIMA) 

model. Third, travel-time distribution is estimated based on the predicted travel time. A two-

component mixture normal model is developed to estimate and synthesize travel-time 

distributions. Fourth, segment travel-time distributions are synthesized to corridor travel-time 

distributions. Inspired by Winkler’s (1981) consensus model, the correlated travel times on 

adjacent segments are treated as bivariate normally distributed random variables. The 

synthesizing method is extended to two-component mixture normal distribution. 

Classify Travel-Time Observations Based on Weather Conditions 

Hierarchical clustering, a widely utilized non-parametric method to determine the hierarchy of 

clusters, is used in this study to classify travel times based on weather conditions. The “hclust” 

function in R’s stats package, developed by the R Development Core Team (2011), is utilized in 

this study to classify trave- time observations based on weather conditions. 

Predict Segment Travel Time 

The ARIMA model has been widely used to forecast traffic flow and travel times in the literature 

(e.g., Van Der Voort et al. 1996, Williams and Hoel 2003, Billings and Yang 2006). In this 

study, the ARIMA model is used to predict segment travel time. The R package “forecast,” 

developed by Hyndman and Khandakar (2007), is used in this study to fit the ARIMA model and 

predict short-term travel time. 

Estimate Segment Travel-Time Distribution Based on Mean Travel Time 

Multistate Model 

Multistate models have been proposed by some researchers to fit travel-time distribution (Park et 

al. 2011, Guo et al. 2010). Multistate travel-time reliability models tend to outperform unimodal 

distribution models, such as normal, gamma, and lognormal distributions, because multistate 

models capture the characteristics of the corresponding state and the probability of encountering 

a specific state (Guo et al. 2010). As in the study by Guo et al. (2010), a two-component normal 

model is used in this study. The first distribution, which has a smaller mean, corresponds to the 

free-flow state. The other distribution, which has larger mean, corresponds to the congested state. 

Consequently, the probability density function (PDF) of the two-component travel-time model is 

shown as follows: 

𝑝(𝑥) = 𝛼𝑝1(𝑥) + (1 − 𝛼)𝑝2(𝑥)      (24) 

where,  

 𝑝𝑖(𝑥) is normal density function 
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 𝛼 is the mixture proportion, 1 ≥ 𝛼 ≥ 0 

In this study, the R package “mixtools,” developed by Benaglia et al. (2009), is utilized to fit the 

multistate model. 

Relationship between Mean and Standard Deviation of Travel Time per Unit Distance 

Several studies (Jones et al. 1989, Mahmassani et al. 2013, Mahmassani et al. 2012, Kim and 

Mahmassani 2015) have claimed that the mean and standard deviation of distance-normalized 

travel time have a strong linear relationship: 

𝜎𝑇 = 1 + 2𝜇𝑇 + 𝜀      (25) 

where, 

 T is travel time per unit distance 

 𝜇𝑇 and 𝜎𝑇 are mean and standard deviation of T, respectively 

 1 and 2 are coefficient to be estimated 

 𝜀 is random error 

Travel-Time Distribution Estimation 

From the two-component model, which is composed of two component normal distributions, we 

can derive the mean and standard deviation of travel times as follows: 

𝜇 = (1 − λ) ∗ 𝜇2 + λ ∗ 𝜇1    (26) 

𝜎2 = 𝜆 (𝜇1 − 𝜇)2 + 𝜎1
2 + (1 − 𝜆) (𝜇2 − 𝜇)2 + 𝜎2

2    (27) 

Guo et al. (2010) pointed out that the mean and standard deviation of travel times in the free-

flow state show little fluctuation throughout the day. Therefore, we can assume the following: 

𝜇1 = 𝐹𝐹𝑇𝑇     (28) 

𝜎1 = 𝜎𝐹𝐹𝑇𝑇   (29) 

Therefore, we have the following: 

𝜇 = (1 − 𝜆) ∗ 𝜇2 + 𝜆 ∗ 𝐹𝐹𝑇𝑇       (30) 

𝜎2 = 𝜆 (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎1
2 + (1 − 𝜆) (𝜇2 − 𝜇)2 + 𝜎2

2    (31) 
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When the freeway is in free-flow condition, 𝜆 is 0. Alternatively, when the freeway is congested, 

𝜆 is 1. 

When 𝜇 = 𝑎𝜇𝑇 and 𝜎 = 𝑎𝜎𝑇, from equation (25), we could derive the following: 

𝜎

𝑎
= 1 + 2

𝜇

𝑎
+ 𝜀     (32) 

 𝜎 = 𝑎1 + 2𝜇 + 𝑎𝜀        (33) 

where, 

  𝑎 is the length of the segment or corridor 

Then, we could assume the following: 

𝜎2 = 𝑎1 + 2𝜇2 + 𝑎𝜀     (34) 

Because 𝜀 is very small, it can be ignored. Moreover, from equation (26), we have the following: 

𝜇 = 𝜇2 + 𝜆 ∗ (𝐹𝐹𝑇𝑇 − 𝜇2)    (35) 

Substituting equations (29) and (34) into equation (31), we have the following: 

𝜎2 = 𝜆 ∗  (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇
2  + (1 − 𝜆) (𝜇2 − 𝜇)2 + (𝑎1 + 2𝜇2)

2      (36) 

Based on equation (30), we have the following: 

𝜆 =
𝜇2−𝜇

𝜇2−𝐹𝐹𝑇𝑇
       (37) 

Substituting equation (14) into equation (13), we have the following: 

𝜎2 =
𝜇2−𝜇

𝜇2−𝐹𝐹𝑇𝑇
∗  (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇

2  +
𝜇−𝐹𝐹𝑇𝑇

𝜇2−𝐹𝐹𝑇𝑇
 (𝜇2 − 𝜇)2 + (𝑎1 + 2𝜇2)

2    (38) 

Then, we have the following: 

𝐵 ∗ 𝜇2
2 + 𝐶 ∗ 𝜇2 + 𝐷 = 0    (39) 

where, 
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  𝐵 = (𝜇 − 𝐹𝐹𝑇𝑇)(1 + 𝜃1
2)  

 𝐶 = 2( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜃1𝜃2𝑎 − 𝜇) + (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇
2  − 𝜎2  

 𝐷 = 2( 𝜇 − 𝐹𝐹𝑇𝑇) ( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜇2 + 𝜃1
2𝑎2) + 𝐹𝐹𝑇𝑇 ∗ 𝜎2   

The derivation of equation (39) is shown in the Appendix. 

If we solve this equation, we have the following: 

𝜇2 =
−𝐶±√𝐶2−4𝐵𝐷

2𝐵
, 𝜇2 > 𝐹𝐹𝑇𝑇     (40) 

Therefore, we can derive λ and 𝜎2. As a result, travel-time distribution is as follows: 

𝑃𝐷𝐹~(1 − 𝜆) ∗ 𝑁(𝜇2, 𝜎2
2) + 𝜆 ∗ 𝑁(𝐹𝐹𝑇𝑇, 𝜎1

2)   (41) 

Based on equation (41), reliability measures such as buffer time or 90th or 95th percentile travel 

times can be derived. Because most reliability measures depend on 95th
 
percentile travel time, 

95th percentile travel time is used to evaluate the performance of the travel-time distribution 

estimation model. 

Options for Synthesizing 

In this subsection, we examine methods for synthesizing and develop a method from there. First, 

the naïve method is a basic method to synthesize corridor-level travel-time distribution where the 

segment travel-time distributions are treated as independent distributions. Second, a consensus 

model (extended Winkler’s method), which is widely used in management science to aggregate 

information, is used to synthesize corridor-level travel-time distribution. Third, a mathematical 

method is developed by assuming that the travel times on k segments are k-variate normal 

densities. 

Naïve Method 

Generally, travel-time distributions are treated as independent distributions. If the segment 

travel-time distributions are Gaussian mixture distributions, such as f(x) and g(y), the following 

is true:  

𝑓(𝑥) =  𝑖𝑓𝑖(𝑥)𝑛
𝑖=1  𝑎𝑛𝑑 𝑔(𝑥) =  𝑗𝑔𝑗(𝑦)𝑛

𝑗=1    (42) 

𝑓𝑖(𝑥)~𝑁(𝜇𝑥𝑖, 𝜎𝑥𝑖
2 ) 𝑎𝑛𝑑 𝑔𝑖(𝑦)~𝑁(𝜇𝑦𝑖, 𝜎𝑦𝑖

2 )   (43) 

Robbins and Pitman (1949) proposed the following: 
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𝑃𝐷𝐹 =   𝑗
𝑛
𝑗=1 𝑖

𝑛
𝑖=1 ∬𝑑𝑓𝑖(𝑥)𝑑𝑔𝑗(𝑦)   (44) 

Then, the naïve method of travel-time distribution estimation is as follows:  

𝑃𝐷𝐹 =   𝑗
𝑛
𝑗=1 𝑖

𝑛
𝑖=1 ∬𝑑𝑓𝑖(𝑥)𝑑𝑔𝑗(𝑦)~  𝑗

𝑛
𝑗=1 𝑖

𝑛
𝑖=1 𝑁(𝜇𝑥𝑖 + 𝜇𝑦𝑗, 𝜎𝑥𝑖

2 + 𝜎𝑦𝑖
2 ) (45) 

Extended Winkler’s Method 

Genest and Zidek (1986) reviewed several methods that are utilized to combine probability 

distributions. The primary focus of these methods includes obtaining information about 

consensus beliefs, expert use, and some relevant aspects of group decision making. Winkler 

(1981) proposed a consensus model that treats the information from k experts as k-variate normal 

densities. The mean of the consensus distribution is a linear combination of the probability 

distributions’ means. For bivariate normal distribution, we have the following: 

𝜇∗ =
(𝜎𝑦

2−𝜌𝜎𝑥𝜎𝑦)𝜇𝑥+(𝜎𝑥
2−𝜌𝜎𝑥𝜎𝑦)𝜇𝑦

𝜎𝑦
2+𝜎𝑥

2−2𝜌𝜎𝑥𝜎𝑦
       (46) 

𝜎∗2 =
(1−𝜌2)𝜎𝑥

2𝜎𝑦
2

𝜎𝑦
2+𝜎𝑥

2−2𝜌𝜎𝑥𝜎𝑦
     (47) 

As a result, the probability density function is 𝑇~𝑁(𝜇∗, 𝜎∗2). 

We can extend this method to synthesize travel-time distribution. If the segment travel-time 

distributions are Gaussian mixture distributions, such as in equation (24), and because 𝜇∗ in 

Winkler’s model does not represent the additive character of travel time, the model can be 

slightly modified as follows: 

𝑃𝐷𝐹~  𝑗
𝑛
𝑗=1 𝑖

𝑛
𝑖=1 𝑁 (𝜇𝑥𝑖 + 𝜇𝑦𝑗,

(1−𝜌2)𝜎𝑥𝑖
2 𝜎𝑦𝑖

2

𝜎𝑥𝑖
2 +𝜎𝑦𝑖

2 −2𝜌𝜎𝑥𝑖𝜎𝑦𝑗
)   (48) 

If we assume that the correlation between synthesized route travel-time distribution and adjacent 

segment travel-time distribution can be calculated by equation (5), the route travel time PDFs 

can be synthesized by adding one segment repeatedly. As a result, the route travel-time 

distribution can be derived. 

Proposed Method 

Based on the Winkler’s (1981) assumption, a mathematical method was proposed. For bivariate 

normal distribution, we have the following: 
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𝐹(𝑋, 𝑌) =
1

2𝜋𝜎𝑋𝜎𝑌√1−𝜌2
𝑒𝑥𝑝 (−

1

2(1−𝜌2)
[
(𝑋−𝜇𝑋)2

𝜎𝑋
2 +

(𝑌−𝜇𝑌)2

𝜎𝑌
2 −

2𝜌(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)

𝜎𝑋𝜎𝑌
])       (49) 

Assume the following: 

𝑥 = 𝑋 − 𝜇𝑋  and  𝑦 = 𝑌 − 𝜇𝑌   (50) 

Therefore, the corridor-level travel time can have following formulation: 

𝑇 = 𝑋 + 𝑌 = 𝑥 + 𝑦 + 𝜇𝑋 + 𝜇𝑌 = 𝑡 + 𝜇𝑇   (51) 

As a result, we have the following: 

𝐹(𝑥, 𝑦) =
1

2𝜋𝜎𝑋𝜎𝑌√1−𝜌2
𝑒𝑥𝑝 (−

1

2(1−𝜌2)
[
𝑥2

𝜎𝑋
2 +

𝑦2

𝜎𝑌
2 −

2𝜌𝑥𝑦

𝜎𝑋𝜎𝑌
])    (52) 

Assume the following: 

𝐴 =
1

2𝜋𝜎𝑋𝜎𝑌√1−𝜌2
    (53) 

𝐵 = −
1

2(1−𝜌2)𝜎𝑋
2    (54) 

𝐶 = −
1

2(1−𝜌2)𝜎𝑌
2    (55) 

𝐷 =
𝜌

(1−𝜌2)𝜎𝑋𝜎𝑌
     (56) 

By substituting equations (53) to (56) into equation (52), we obtain the following intermediate 

form: 

𝐹(𝑥, 𝑦) = 𝐴 × 𝑒𝑥𝑝 𝐵𝑥2 + 𝐶𝑦2 + 𝐷𝑥𝑦    (57) 

In order to obtain corridor travel-time distribution, we have the following: 

𝑥 + 𝑦 = 𝑡, 𝑡 > 𝑥 𝑎𝑛𝑑  𝑡 > 𝑦     (58) 

Then, the integral of equation (52) is shown as follows: 

∫ 𝐹(𝑥, 𝑦)𝑑𝑦
𝑡−𝑥

−∞
= 𝐴 × 𝑒𝑥𝑝 𝐵𝑥2 ∫ 𝑒𝑥𝑝 𝐶𝑦2 + 𝐷𝑥𝑦 𝑑𝑦

𝑡−𝑥

−∞
    (59) 
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In order to simplify equation (59), we have the following: 

𝑦 = 𝑡 − 𝑥 (60) 

Then, we can derive the integral of part of equation (59) as follows:  

∫ 𝑒𝑥𝑝 𝐶𝑦2 + 𝐷𝑥𝑦 𝑑𝑦
𝑡−𝑥

−∞
=

√𝜋∙exp[−
𝐷2𝑥2

4𝐶
]∙erf[√−𝐶∙𝑦+

𝐷𝑦

2√−𝐶
]

2√−𝐶
|

−∞

𝑡−𝑥

                                                                        

=
√𝜋∙exp[−

𝐷2𝑥2

4𝐶
]

2√−𝐶
𝑒𝑟𝑓 [√−𝐶 ∙ (𝑡 − 𝑥) +

𝐷𝑥

2√−𝐶
] (61) 

As a result, the cumulative density function can be derived as follows: 

𝐶𝐷𝐹 = ∫ 𝑑𝑥 ∫ 𝐹(𝑥, 𝑦)𝑑𝑦
𝑡−𝑥

−∞

𝑡

−∞
= ∫

𝐴∙𝑒𝑥𝑝[𝐵𝑥2]∙√𝜋∙exp[−
𝐷2𝑥2

4𝐶
]

2√−𝐶
𝑒𝑟𝑓 [√−𝐶 ∙ (𝑡 − 𝑥) +

𝐷𝑥

2√−𝐶
] 𝑑𝑥

𝑡

−∞
  (62) 

According to the Leibniz rule, which is a widely used method for differentiating an integral, we 

have the following: 

𝑑

𝑑𝑡
(∫ 𝐹(𝑥, 𝑡

ℎ(𝑡)

𝑔(𝑡)
)𝑑𝑥) = {𝐹 ℎ(𝑡), 𝑡 ℎ̇(𝑡) − 𝐹 𝑔(𝑡), 𝑡 𝑔̇(𝑡)} + ∫

𝜕𝐹(𝑥,𝑡)

𝜕𝑡

ℎ(𝑡)

𝑔(𝑡)
𝑑𝑥  (63) 

Flanders (1973) pointed out that one of the frequent cases is as follows: 

𝜕

𝜕𝑏
(∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎
) = 𝑓(𝑏)    (64) 

Then, we obtain the following form: 

𝑃𝐷𝐹 =
𝜕(𝐶𝐷𝐹)

𝜕𝑇
=

𝐴∙𝑒𝑥𝑝[𝐵𝑡2]∙√𝜋∙exp[−
𝐷2𝑡2

4𝐶
]

2√−𝐶
𝑒𝑟𝑓 [

𝐷𝑡

2√−𝐶
]    (65) 

Based on equation (51), we have the following: 

𝑡 = 𝑇 − 𝜇𝑇   (66) 

As a result, the probability density function of corridor-level travel time is shown as follows: 

𝑃𝐷𝐹 =
𝜕(𝐶𝐷𝐹)

𝜕𝑇
=

𝐴√𝜋∙𝑒𝑥𝑝[𝐵(𝑇−𝜇𝑇)2−
𝐷2(𝑇−𝜇𝑇)

2

4𝐶
]

2√−𝐶
𝑒𝑟𝑓 [

𝐷(𝑇−𝜇𝑇)

2√−𝐶
]    (67) 
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Winitzki (2003) provided a uniform approximation to error function with an error less than 2%. 

The function is described as follows:  

erf(𝑥) = 1 −
𝑒−𝑥2

𝑥√𝜋
𝑞(𝑥)   (68) 

𝑞(𝑥) ≈
√𝜋+(𝜋−2)𝑥2

1+𝑥√𝜋+(𝜋−2)𝑥2   (69) 

Consequently, the probability density function can be calculated. 

Furthermore, this method can be extended to multivariate conditions and other distributions, such 

as lognormal, gamma, and exponential distributions. However, as the value of k increases, the 

number of dimensions of the covariance matrix increases rapidly, and it becomes difficult to 

derive the probability density function based on this method.  

In order to simplify the model, we assume that only adjacent segments have correlations to each 

other and that the correlation between non-adjacent segments is zero. Consequently, travel-time 

distribution on every other segment is treated independently. If the travel-time distributions have 

a normal distribution, then we have the following: 

𝑋~𝑁( 𝜇2𝑖+1
𝑛
𝑖=0 ,  𝜎2𝑖+1

2𝑛
𝑖=0 )     (70) 

𝑌~𝑁( 𝜇2𝑖
𝑛
𝑖=0 ,  𝜎2𝑖

2𝑛
𝑖=0 )   (71) 

The correlation between X and Y can be calculated as follows: 

𝜌̅ =
 𝜌𝑖

𝑛−1
𝑖=1

𝑛−1
     (72) 

where, 

 𝜌𝑖  is the correlation between adjacent segments 

 n is number of segments 

Then, equation (67) is used to derive the corridor travel-time distribution. 

If the segment travel-time distributions are independent mixture distributions, such as in equation 

(42), then we can use equation (45) to derive the density function. After this step, the bivariate 

model for the mixture distributions can be used to synthesize route travel time PDFs. 
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Travel-Time Reliability Prediction Framework 

With all aspects of the travel-time reliability prediction framework having been described, the 

overall short-term travel-time reliability prediction framework can be presented as follows: 

Step 1. Classify current and future travel times on each segment based on weather data. 

Step 2. Use the ARIMA model to predict travel times based on current travel times. 

Step 3. Use the travel-time distribution estimation method to estimate the short-term travel-time 

distribution of each segment. 

Step 4. Use the synthesizing algorithm to derive the corridor-level travel-time distribution. 

Step 5. Derive travel-time reliability measures from the corridor-level travel-time distribution. 

Travel-Time Distribution Based on Vissim  

The corridor-level travel time can also be obtained by simulation with PTV Vissim 7.00. Vissim 

is popular microscopic traffic simulation software that adopts the psycho-physical car-following 

model developed by Wiedemann (PTV AG 2014). Because Vissim can accurately simulate the 

behavior of individual vehicles and produce diverse evaluation parameters, it has been widely 

used in transportation engineering for modeling various traffic scenarios. There are two car 

following models available in Vissim, Wiedemann 74 and Wiedemann 99, which are used to 

model urban traffic and freeway traffic, respectively. In this study, the Wiedemann 99 car 

following model was used.  

The driver behavior parameters were calibrated by Dong et al. (2015) before simulation. Three 

car-following model parameters, including standstill distance (CC0), headway time (CC1), and 

“following” variation (CC2), have been found to have a significant influence on traffic capacity. 

Therefore, the default values were replaced with the calibrated values, where CC0 is 4.92 ft, CC1 

is 0.90 s, and CC2 is 13.12 ft. More details about the calibration can be found in Dong et al. 

(2015). The traffic volume on the study corridor was balanced based on the method proposed by 

Shaw and Noyce (2014). 

In this study, the congested and uncongested conditions were simulated separately. The travel 

time-distributions were derived by resampling the travel times from the output from Vissim 

based on the percentage of the congested and uncongested conditions in the real world. 
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RESULTS 

Travel-Time Reliability Based on Radar Sensor Data 

The proposed methodology was applied to estimate travel time on part of I-235, as shown in 

Figure 6. This six-lane freeway section (three lanes in each direction) is one of the busiest 

freeways in West Des Moines, Iowa. The locations of the roadway sensors are shown in Figure 

6. All of the sensors are located in the merging/diverging areas, where the sensors can collect 

data from the ramps and the main road.  

 

Map data ©2015 Google 

Figure 6. Study corridor and sensor locations 

Because the INRIX travel times are provided segment by segment, a temporally stitched 

algorithm (Chase et al. 2012) was adopted to generate probe vehicles at 1-minute time intervals. 

The temporally stitched algorithm was intended to simulate the experienced travel time of a 

probe vehicle traveling along the corridor. In this paper, the probe vehicle travel times are used 

as the ground truth. 

Travel-Time Calculation 

The model-based travel time (MTT), Vanajakshi et al. (2009) travel time, naïve approach-based 

travel time, and INRIX travel time (INRIX-TT), represented as travel-time index, are plotted in 

Figure 7. Because congestion generally occurred during the morning peak hours on weekdays at 

the study site, the travel times were estimated for each 1-minute interval from 7:00 a.m. to 9:30 

a.m. using one month of data from April 2014. Figure 7 compares the time-dependent travel 

times estimated by different methods on an example day.  
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Corridor 

Figure 7. Comparison of model-based travel-time index, Vanajakshi et al. (2009) travel-

time index, naïve approach-based travel-time index, and INRIX travel-time index 

Figure 7 shows that the model-based travel-time index estimation follows the pattern of the 

INRIX travel-time index well, at both the segment and corridor levels. The naïve approach and 

Vanajakshi et al. (2009) model, however, underestimate the delay in terms of congestion 

duration and severity. Similar patterns are observed for other days as well. 

To show the spread of the breakdown, the speed contour during the congested period, from 7:20 

a.m. to 8:30 a.m., is plotted in Figure 8. It can be seen that the decreases in speed begin at sensor 

3 and propagate to sensor 1. At sensor 4 the traffic is free flowing.  
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Figure 8. Speed contour of sensors 

Performance measures, including mean square error (MSE) and mean absolute percentage error 

(MAPE), are calculated based on the one-month data as follows: 

𝑀𝑆𝐸 =
 (𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙)2

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
   (73) 

𝑀𝐴𝑃𝐸 =
 

 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑−𝑎𝑐𝑡𝑢𝑎𝑙 

𝑎𝑐𝑡𝑢𝑎𝑙

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
∗ 100%  (74) 

Table 4 compares the values of the performance measures for all of the methods at both the 

segment and corridor levels. It can be seen that the proposed method outperforms the other 

methods.  
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Table 4. Performance measures of different methods 

  

Corridor Segment 1 Segment 2 

MSE MAPE MSE MAPE MSE MAPE 

Model-based approach 0.029 0.661 0.017 0.541 0.087 1.557 

Vanajakshi et al. (2009) model 0.188 7.698 0.243 12.742 0.233 9.191 

Naïve approach 0.234 12.155 0.365 13.451 0.273 13.150 

 

Additionally, Table 5 shows the impact of data aggregation on the performance of the proposed 

model.  

When the aggregation level increases, the error of the proposed model increases. The differences 

in the errors of three methods become less noticeable at larger aggregation levels. For example, 

with 1-minute aggregation level data, the proposed model is significantly better than the other 

two; with 5-minute aggregation level data, the proposed model performs similarly to the 

Vanajakshi et al. (2009) model. 
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Table 5. Performance measures at different data aggregation levels 

  
Corridor Segment 1 Segment 2 

Model- 

based Naïve 

Vanajakshi  

et al. model 

Model- 

based Naïve 

Vanajakshi  

et al. model 

Model- 

based Naïve 

Vanajakshi  

et al. model 

MSE 

1 min 0.03 0.19 0.21 0.02 0.36 0.26 0.09 0.32 0.23 

5 min 0.18 0.22 0.20 0.14 0.24 0.12 0.23 0.26 0.23 

10 min 0.23 0.14 0.21 0.33 0.40 0.31 0.30 0.34 0.30 

15 min 0.24 0.25 0.25 0.23 0.24 0.22 0.30 0.31 0.35 

MAPE 

1 min 0.66 7.70 7.15 0.54 13.45 8.58 1.56 9.45 9.39 

5 min 9.32 11.01 9.45 7.73 12.71 6.71 11.13 13.96 9.24 

10 min 10.74 4.81 8.24 12.65 16.08 12.49 11.40 14.03 12.07 

15 min 17.42 18.39 18.39 11.30 12.78 11.44 14.27 15.14 15.47 
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Travel-Time Distribution 

The maximum likelihood estimation was used to fit the distributions. To demonstrate the 

goodness of fit, the log-likelihood value of each distribution is summarized in Table 6. Because 

the lognormal distribution has the smallest log-likelihood value, it was selected as the best 

distribution to fit the travel-time data. 

Table 6. Model selection based on log-likelihood 

  
Weibull Gamma Lognormal Normal 

INRIX-TT 

Segment 1 -8992.789 -8329.302 -7743.998 -10314.31 

Segment 2 -7331.44 -6568.859 -5617.297 -9385.414 

Corridor -13409.2 -12715.01 -12028.62 -14849.25 

MTT 

Segment 1 -1575.996 -1465.623 -1313.615 -1968.53 

Segment 2 -1309.031 -1163.501 -1093.47 -1393.158 

Corridor -2460.338 -2320.344 -2206.8 -2684.203 

 

The weekday data for the peak 15-minute travel times (7:45 a.m. to 8:00 a.m.) from December 1, 

2013 to December 1, 2014 were used to estimate the travel-time distribution. After removing the 

outliers, the correlation between segment 1 and segment 2 is 0.83 for the INRIX data and 0.97 

for the model-based travel time. The proposed MTT method slightly overestimated the 

correlation. The travel-time distributions are shown in Figure 9. The MTT distribution captured 

the tendency of the INRIX travel-time distribution well.  
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Lognormal distribution of segment 2 travel times 

 

Lognormal distribution of corridor travel times 

Figure 9. Probability density distributions of peak 15-minute travel times  

Figure 10 plots the cumulative distribution functions of the lognormal distributions estimated 

based on the INRIX travel time and model-based travel time.  
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Cumulative distribution of segment 1 travel times 

 

Cumulative distribution of segment 2 travel times 
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Cumulative distribution of corridor travel times 

Figure 10. Cumulative density distributions of peak 15-minute travel times  

Table 7 compares the travel-time reliability indices of the model-based travel-time estimates and 

INRIX travel times.  

Table 7. Variance of reliability indices of INRIX travel time and model-based travel time  

 

Mean  

(min) 

Standard  

Deviation 

95th  

Percentile  

(min) 

Planning  

Time  

Index 

Buffer  

Time  

(min) 

Buffer  

Time  

Index 

INRIX-TT 

Segment 1 1.14 1.38 1.88 2.04 0.74 0.65 

Segment 2 1.51 1.35 2.56 1.95 1.05 0.69 

Corridor 2.55 1.37 4.90 2.21 2.35 0.92 

MTT 

Segment 1 1.26 1.56 2.52 2.74 1.26 1.00 

Segment 2 1.47 1.40 3.00 2.29 1.53 1.03 

Corridor 2.74 1.36 5.32 2.40 2.58 0.94 

 

At the corridor level, all MTT reliability indices are within a 10% error range, in contrast to the 

indices calculated based on INRIX travel times. At the segment level, although the means and 

standard deviations of the MTT estimates are close to those of the INRIX travel times, the 95th 

percentile travel time, planning time index, buffer time, and buffer time index show fairly 

significant discrepancies, up to 70%. Note that the MTT estimation method tends to overestimate 

reliability indices in most cases. 

The errors in the proposed travel-time estimation model could be attributed to several factors. 

First, the first-in, first-out assumption does not take lane change behavior into consideration in 
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the calculation. As a result, the model may underestimate or overestimate the number of vehicles 

approaching the bottleneck. Second, missing values from the radar sensor data might also cause 

errors in estimating travel times, which in turn may cause errors in computing travel-time 

reliability indices.  

Corridor-Level Travel-Time Reliability Prediction 

The study freeway network is located in Des Moines, Iowa. Figure 11 shows a map of the study 

area. The network contains two major freeways, I-80/35 and I-235. The distances of these two 

corridors are 16 and 15 miles, respectively.  

 

Map data ©2015 Google 

Figure 11. Study area 

Based on hierarchical clustering, the weather and road surface conditions were classified into 

three conditions: 

 Rain: rainy, wet, and trace moisture conditions 

 Snow: snowy, chemically wet, ice watch, and ice warning conditions 

 Good Weather: conditions other than rain and snow 

Validating Model Assumptions 

The actual probe vehicle data described above were used to validate three major assumptions 

made to derive the models: (1) the relationship between the mean and standard deviation of the 

travel time per distance is linear, (2) the mean and standard deviation of the free-flow state of the 
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two-component normal distribution shows little fluctuation throughout the day, and (3) mean 

travel times vary with time during the peak hour. 

First Assumption: Relationship between Mean and Standard Deviation of Travel Time per 

Distance Is Linear 

Figure 12 shows the linear regression results, including the formula and the coefficient of 

determination (R
2
). For the regression results, R

2
 values usually serve as the diagnostic measure. 

In this study, the general definition of R
2
 was utilized to evaluate the goodness of fit. Figure 12 

shows that the linear proportional model has a relatively high goodness of fit in all cases. 
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Snow (I-235) 

 

Good weather (I-35/80) 
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Rain (I-35/80) 

 

Snow (I-35/80) 

Figure 12. Relationship between mean and standard deviation of travel time per mile under 

different weather conditions for Des Moines, Iowa freeway data 

Second Assumption: Mean and Standard Deviation of Free-flow State Shows Little Fluctuation 

throughout the Day 

In order to validate the assumption about the component means and standard deviations of the 

two-component mixture normal model, the two-component mixture normal model was used to fit 

the travel-time distribution under different weather conditions and time intervals. The results are 

shown in Figure 13 and Figure 14.  
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Snow (I-235) 

 

Good weather (I-35/80) 

13

15

17

19

21

23

25

27

29

31

33

7
:0

0

7
:3

0

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

1
4

:0
0

1
4

:3
0

1
5

:0
0

1
5

:3
0

1
6

:0
0

1
6

:3
0

1
7

:0
0

1
7

:3
0

1
8

:0
0

1
8

:3
0

1
9

:0
0

1
9

:3
0

M
ea

n
 T

ra
ve

l T
im

e 
(m

in
) 

Time 

Free-Flow

Congestion

10

12

14

16

18

20

22

24

26

7
:0

0

7
:3

0

8
:0

0

8
:3

0

9
:0

0

9
:3

0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

1
2

:3
0

1
3

:0
0

1
3

:3
0

1
4

:0
0

1
4

:3
0

1
5

:0
0

1
5

:3
0

1
6

:0
0

1
6

:3
0

1
7

:0
0

1
7

:3
0

1
8

:0
0

1
8

:3
0

1
9

:0
0

1
9

:3
0

M
ea

n
 T

ra
ve

l T
im

e 
(m

in
) 

Time 

Free-Flow

Congestion



45 

 

Rain (I-35/80) 

 

Snow (I-35/80) 

Figure 13. Mean travel times of two-component multistate model under different weather 

conditions 
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Good weather (I-235) 

 

Rain (I-235) 
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Snow (I-235) 
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Rain (I-35/80) 

 

Snow (I-35/80) 

Figure 14. Standard deviation of two-component multistate model under different weather 

conditions 

Figure 13 and Figure 14 show the means and standard deviations, respectively, of travel times in 

a free-flow state and a congested state. The figures show that the means and standard deviations 

of travel times in a free-flow state have little fluctuation throughout the day and that the means 

and standard deviations of travel times in a congested state vary with time. Roughly, the means 

and standard deviations of travel times in a congested state are higher during the morning peak 

and afternoon peak.  
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Mean Travel Times during Peak Hour 

Figure 15 shows that the mean travel times vary with time. The mean travel times are higher 

during the morning peak on I-235 and the afternoon peak on I-35/80. Consequently, the ARIMA 

model was used to fit and predict the travel time during peak hours. 

 

I-235 

 

I-35/80 

Figure 15. Historical mean travel times from January 2013 through December 2014 
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Evaluating Performance of Travel-Time Distribution Estimation Method 

In this study, according to the historical free-flow travel-time distributions, the standard 

deviation of the free-flow state was estimated to be 0.3. Because the 95th percentile travel time is 

the key travel-time measure, it was used as the index to evaluate the performance of the travel-

time distribution estimation framework. 
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Rain (I-35/80) 

 

Snow (I-35/80) 

Figure 16. Ground truth and estimated 95th percentile travel time under different weather 

conditions 

From Figure 16, the estimated 95th percentile travel time well captured the pattern of ground 

truth 95th percentile travel time under different weather conditions. Under snowy conditions, the 

model shows slightly lower accuracy.  

Evaluating the Performance of Synthesizing Methods 

Because a two-component normal model is used in this study, the components of the corridor-

level travel-time distribution would increase exponentially with an increase in the number of 
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segments. Consequently, the naïve method and extended Winkler’s method cannot be used in a 

large-size corridor that contains a large number of segments. The numbers of segments on I-235 

and I-35/80 in the study area are 39 and 14, respectively. In this section of the report, the 

respective peak hours on I-235 and I-35/80 are used to evaluate the performance of synthesizing 

methods. 

Evaluating the Performance of Synthesizing Methods on Small-size Corridors 

Part of I-235, shown in Figure 17, was used to evaluate the performance of all synthesizing 

methods. 

 

Map data ©2015 Google 

Figure 17. Study corridor 

As shown in Figure 18, only the proposed method roughly captured the pattern of PDFs for the 

ground truth travel time. However, this method underestimated the long tail of the travel-time 

distribution.  
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Snow 

Figure 18. Performance of synthesizing methods under different weather conditions 

The error in the proposed method may be also caused by a time-varying correlation between 

segments. Chandra and Al-Deek (2009) proposed that the correlations between segments vary 

with time. Consequently, it can be assumed that 𝛽1 and 𝛽2 are time-varying parameters.  

Figure 19 provides an example to illustrate that 𝛽1 and 𝛽2 in equation (5) are time-varying 

parameters.  

If we could identify a functional form or empirical trend with time series methods, such as the 

ARIMA model or the generalized autoregressive conditionally heteroscedastic (GRACH) model, 

then we would be able to apply the proposed model to capture time-dependent correlated traffic 

conditions in the statistical representation of travel-time distribution. However, such efforts 

would be part of a future study. 
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Figure 19. Time-varying parameters of I-35/80 (7:00 a.m. to 8:00 p.m.) 

Evaluating the Performance of the Proposed Method on a Large-size Corridor 

Because the proposed method would result a distribution similar to a two-component normal 

distribution, the framework proposed to solve the problem of large-size corridors has the form 

shown in Figure 20. 
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Figure 20. Corridor decomposition method 

The corridor-level travel-time distribution was calculated based on this method. The results are 

shown in Figure 21. 
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Rain (I-35/80) 

 

Snow (I-35/80) 

Figure 21. Performance of synthesizing methods under different weather conditions 

As shown in Figure 21, the proposed synthesizing method is able to capture the pattern of 

corridor-level travel-time distribution. Moreover, the proposed method captures the long tail of 

the travel-time distribution. 

Evaluating Performance of Framework 

As shown in Figure 22, the predicted travel time follows the observed travel time with a slight 

hysteresis effect.  
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Rain (I-35/80) 

Figure 22. Observed travel time, predicted travel time, and predicted 95th percentile travel 

time in different weather conditions 

The observed time duration did not yield sufficient data points to provide a stable distribution. 

As a result, the accuracy of the predicted 95th percentile travel time could not be proved. 

However, based on the performance of the travel-time distribution estimation framework, we 

believe the result is accurate. Moreover, with a more accurate short-term travel-time prediction 

model, the accuracy of predictions of travel-time distribution would improve. 

Travel-Time Distribution Based on Vissim 

Congested and uncongested scenarios for eastbound traffic on I-235 from 42nd Street to I-80 in 

Des Moines, Iowa were simulated in Vissim. The target corridor, shown in Figure 23, was 13.05 

miles long.  
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Figure 23. Test segment on I-235, Des Moines, IA 

The traffic volumes of each segment/on-ramp/off-ramp for both congested and uncongested 

scenarios are shown in Table 8.  

Table 8. Traffic volumes in congested and uncongested conditions 

Segment Description Volume (vph) 

Order Station Type Congested Uncongested 

1 I-235 EB to VALLEY WEST-EB Main 5327 1733 

2 I-235 EB to VALLEY WEST-EB-R Off-ramp 540 108 

3 Ramp 1 On-ramp 285 438 

4 I-235 EB from Vly West Dr-EB Main 5072 2063 

5 I-235 EB from Vly West Dr-EB-R On-ramp 330 580 

6 Ramp 2 Off-ramp 146 114 

8 I-235 WB E of 22nd STREET-EB Main 5256 2529 

7 I-235 WB E of 22nd STREET-EB-R On-ramp 874 308 

9 Ramp 3 Off-ramp 470 455 

10 I-235 EB @ 8th Street Loop-EB Main 5660 2382 

11 I-235 EB @ 8th Street Loop-EB-R On-ramp 408 307 

12 Ramp 4 Off-ramp 176 52 

13 I-235 EB EAST OF 63RD-EB Main 5892 2637 

14 I-235 EB EAST OF 63RD-EB-R On-ramp 644 360 

15 Ramp 5 On-ramp 127 127 

16 Ramp 6 Off-ramp 982 665 

17 I-235 at 42nd STREET EB-EB Main 5681 2459 

18 Ramp 7 On-ramp 12 380 
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Segment Description Volume (vph) 

Order Station Type Congested Uncongested 

19 Ramp 8 On-ramp 39 172 

20 I-235 EB 28th STREET-EB Main 5732 3011 

21 Ramp 9 Off-ramp 751 385 

22 Ramp 10 On-ramp 35 35 

23 I-235 EB to MLK-EB Main 5016 2661 

24 Ramp 11 Off-ramp 278 346 

25 Ramp 12 Off-ramp 171 214 

26 Ramp 13 Off-ramp 310 387 

27 Ramp 14 On-ramp 120 120 

28 Ramp 15 On-ramp 15 15 

29 I-235 WB WEST END of BRIDGE-EB Main 4390 1848 

30 Ramp 16 On-ramp 247 462 

31 I-235 EB at WALKWAY-EB Main 4637 2310 

32 I-235 EB at WALKWAY-EB-R Off-ramp 375 108 

33 I-235 EB 9th STREET WALL-EB Main 4262 1460 

34 I-235 EB 9th STREET WALL-EB-R Off-ramp 460 42 

35 Ramp 17 On-ramp 46 524 

36 Ramp 18 Off-ramp 373 273 

37 Ramp 19 On-ramp 2 46 

38 Ramp 20 Off-ramp 59 59 

39 I-235 EB at E 21st St-EB Main 3418 1656 

40 I-235 WB at Washington-EB Main 3418 1656 

41 I-235 WB at Washington-EB-R On-ramp 374 192 

42 Ramp 21 Off-ramp 20 164 

43 Ramp 22 On-ramp 57 107 

44 Ramp 23 Off-ramp 642 317 

45 I-235 NB EUCLID LOOP-EB Main 3187 1474 

46 I-235 NB EUCLID LOOP-EB-R On-ramp 216 52 

47 Ramp 24 On-ramp 201 10 

48 I-235 NB from EUCLID-EB Main 3604 1536 

49 I-235 NB from EUCLID-EB-R On-ramp 425 144 

 

Each scenario was simulated for 99,999 seconds. The travel time of each vehicle traveling from 

the starting point to the ending point was collected. Considering that the traffic was not stable at 

the beginning of the simulation period, only the travel-time data after 1,800 seconds were used in 

the data analysis described below.  

As shown in Figure 24, the simulated travel-time distribution is similar to the travel-time 

distribution based on probe vehicle data.  
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Figure 24. Travel-time distributions based on INRIX data and simulated data 

The differences between these two distributions are caused by the following reasons: 

 The parameters were manually calibrated and used some data collected at different freeway 

segments. 

 The traffic volume on freeways is dynamic. However, deterministic values were used in the 

simulation.   

 The percentages of congested and uncongested travel times were based on a Gaussian 

mixture model.  
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CONCLUSIONS 

In this study, a travel-time estimation model and a travel-time reliability prediction framework 

were proposed.  

The travel-time estimation model considers spatially correlated traffic conditions. Segment- and 

corridor-level travel-time distributions were estimated using probe vehicle data and roadside 

radar sensor data. Corridor-level travel-time reliability measures were extracted from the travel-

time distributions. When compared to the probe vehicle data from INRIX, the proposed travel-

time estimation model was found to capture the patterns of travel time and its distribution well. 

However, inconsistencies or gaps in the missing INRIX and sensor data can randomly cause the 

MTT method to overestimate/underestimate travel-time reliability.  

The short-term travel-time reliability prediction framework was developed based on real-time 

traffic conditions. The predicted distributions are intended to help traffic management practice 

by providing valuable information about short-term traffic conditions and their variability. The 

multistate distribution can account for congested and uncongested travel times. From the 

distribution, travel-time reliability measures can be derived that can indicate uncertainty in 

corridor travel time for the corresponding time interval.  

The travel-time reliability prediction framework contains four parts:  

1. Travel-time observations are classified based on weather conditions using hierarchical cluster 

analysis. The travel times are categorized into three weather conditions: good weather, rain 

and snow.  

2. The ARIMA model is used to predict travel time in the corridor. However, ARIMA is not the 

only option for this part of the framework. The more precise the travel-time predictions, the 

more accurate the travel-time distributions that can be derived.  

3. Starting from the linear relationship between the mean and standard deviation of travel time 

per unit distance, a travel-time distribution estimation method is derived to derive a travel-

time reliability measure, such as 95th percentile travel time.  

4. According to the non-linear relationships between the correlation of different segments to 

each other and the distance of different segments from each other, a method for synthesizing 

route travel time is determined.  

The proposed framework was tested on a freeway network in Des Moines, Iowa. The model 

parameters were estimated and the underlying assumption validated by using actual probe 

vehicle data. From the analysis results, the linear relationship between the mean and standard 

deviation of travel time per unit distance was validated. Moreover, the non-linear relationship 

between the correlation of different segments to each other and the distance of different segments 

from each other was adequately represented by a power model. The results of the travel-time 

distribution estimation method and the synthesizing method were evaluated and compared with 

the probe vehicle travel-time data. The results of a 95th percentile travel-time estimation show 

that the segment travel-time distribution estimation model captured the pattern of actual travel-

time distributions. Furthermore, the proposed synthesizing method can adequately represent 
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short-term corridor-level travel-time distributions. Additionally, the Vissim-simulated travel-

time distribution is similar to the travel-time distribution based on the probe data.  

In conclusion, the following are some directions for future research. First, the method for 

estimating corridor-level travel time and its distribution relies on point measurements collected 

from side-fired radar sensors. In future research, the impacts of lane-changing behavior and the 

temporal correlation of this behavior to travel time can be incorporated into the model. 

Moreover, it is desirable to examine and consider the distinct car-following behavior of 

passenger cars and heavy vehicles in the travel-time estimation model.  

Additionally, the short-term travel-time reliability prediction framework can be developed in 

future research. The framework provides a systematic way to estimate the reliability of real-time 

and near-future corridor travel time. In this framework, the synthesizing method, which is based 

on two-component mixture normal distribution, well captures the long tail of the ground truth 

travel-time distribution. The proposed framework also incorporates the impacts of weather on 

travel-time reliability. Based on the findings of this study and the performance of this 

framework, there are some potential future research directions. First, the proposed travel-time 

distribution estimation method can be extended to estimate the arterial travel-time distribution. 

Second, the synthesizing method can be extended to other distributions, such as lognormal and 

gamma distributions. Third, the proposed travel-time distribution estimation method can be 

extended to estimate travel-time distribution from limited probe samples. 
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APPENDIX 

Equation (39) is derived as follows: 

𝜎2 =
𝜇2−𝜇

𝜇2−𝐹𝐹𝑇𝑇
∗  (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇

2  +
𝜇−𝐹𝐹𝑇𝑇

𝜇2−𝐹𝐹𝑇𝑇
 (𝜇2 − 𝜇)2 + (𝑎1 + 2𝜇2)

2   

(𝜇2 − 𝐹𝐹𝑇𝑇) ∗ 𝜎2 = (𝜇2 − 𝜇) (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇
2  +( 𝜇 − 𝐹𝐹𝑇𝑇) (𝜇2 − 𝜇)2 +

(𝑎1 + 2𝜇2)
2  

Assume  𝐴 =  (𝐹𝐹𝑇𝑇 − 𝜇)2 + 𝜎𝐹𝐹𝑇𝑇
2   , we have 

𝜇2 ∗ 𝜎2 − 𝐹𝐹𝑇𝑇 ∗ 𝜎2 = 𝜇2 ∗ 𝐴 − 𝜇 ∗ 𝐴 +( 𝜇 − 𝐹𝐹𝑇𝑇) (1 + 𝜃2
2)𝜇2

2 + 2(𝜃1𝜃2𝑎 − 𝜇)𝜇2 + (𝜇2 +
𝜃1

2𝑎2)  

( 𝜇 − 𝐹𝐹𝑇𝑇)(1 + 𝜃2
2)𝜇2

2 +  2( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜃1𝜃2𝑎 − 𝜇) + 𝐴 − 𝜎2 𝜇2 +  ( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜇2 +
𝜃1

2𝑎2) + 𝐹𝐹𝑇𝑇 ∗ 𝜎2 = 0 

Assume, 

 𝐵 = (𝜇 − 𝐹𝐹𝑇𝑇)(1 + 𝜃1
2)  

𝐶 = 2( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜃1𝜃2𝑎 − 𝜇) + 𝐴 − 𝜎2  

𝐷 = 2( 𝜇 − 𝐹𝐹𝑇𝑇) ( 𝜇 − 𝐹𝐹𝑇𝑇)(𝜇2 + 𝜃1
2𝑎2) + 𝐹𝐹𝑇𝑇 ∗ 𝜎2   

Then, we have  

𝐵 ∗ 𝜇2
2 + 𝐶 ∗ 𝜇2 + 𝐷 = 0  
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